Two-dimensional DNA gel electrophoresis mapping: a novel approach to diversity analysis of bacterial communities in environmental soil.

نویسندگان

  • Guohua Liu
  • Takashi Amemiya
  • Kiminori Itoh
چکیده

The diversity analysis of bacteria is useful for the environmental assessment of soil. Traditional molecular-based methods such as denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) analysis achieve a low-resolution display of bacterial DNA fragments on a gel. To improve the resolution, a novel two-dimensional DNA gel electrophoresis (2-DGE) method was designed. This method can generate a high-resolution DNA map that facilitates the detailed analysis of soil bacteria. This map can be obtained by utilizing 2-DGE to separate genomic DNA fragments produced by polymerase chain reaction (PCR) amplification on the basis of chain length and G+C content. To develop this 2-DGE method further and to apply it to the assessment of bacterial diversity, we carried out a 2-DGE mapping of bacterial DNA fragments from different environmental soils and computed Shannon index as well as plotted rank-abundance curves on the basis of the relative intensity of each spot on the maps. DGGE mapping was also performed to compare the resolution of the two methods. 2-DGE mapping was capable of generating a higher resolution display by a factor of more than 2 using a DGGE fingerprint pattern on a piece of gel. Furthermore, the higher number of detected spots from the 2-DGE map enabled the assessment of differences in bacterial diversity in complex soil systems using a logarithmic normal rank-abundance plot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spatial factor, rather than elevated CO₂, controls the soil bacterial community in a temperate Forest Ecosystem.

The global atmospheric carbon dioxide (CO₂) concentration is expected to increase continuously over the next century. However, little is known about the responses of soil bacterial communities to elevated CO₂ in terrestrial ecosystems. This study aimed to partition the relative influences of CO₂, nitrogen (N), and the spatial factor (different sampling plots) on soil bacterial communities at th...

متن کامل

Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags.

Arctic tundra and boreal forest soils have globally relevant functions that affect atmospheric chemistry and climate, yet the bacterial composition and diversity of these soils have received little study. Serial analysis of ribosomal sequence tags (SARST) and denaturing gradient gel electrophoresis (DGGE) were used to compare composite soil samples taken from boreal and arctic biomes. This stud...

متن کامل

Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints.

A novel approach was developed to quantify rRNA sequences in complex bacterial communities. The main bacterial 16S rRNAs in Drentse A grassland soils (The Netherlands) were amplified by reverse transcription (RT)-PCR with bacterium-specific primers and were separated by temperature gradient gel electrophoresis (TGGE). The primer pair used (primers U968-GC and L1401) was found to amplify with th...

متن کامل

Bacterial diversity in agricultural soils during litter decomposition.

Denaturing gradient gel electrophoresis (DGGE) of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of crop residues in agricultural soils. Ten strains were tested, and eight of these strains produced a single band. Furthermore, a mixture of strains yielded distinguishable bands. Thus, DGGE DNA band patterns were use...

متن کامل

Bacterial diversity in soils around a lead and zinc mine.

Five samples of soil collected from a lead and zinc mine were used to assess the effect of combined contamination of heavy metals on soil bacterial communities using a polyphasic approach including characterization of isolates by culture method, community level catabolic profiling in BIOLOG GN microplates, and genetic community fingerprinting by denaturing gradient gel electrophoresis of 16S rD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioscience and bioengineering

دوره 105 2  شماره 

صفحات  -

تاریخ انتشار 2008